

Cosmic Chemistry: Planetary Diversity

Stochastic Processes: Out of Chaos

STUDENT REPORTING/DATA SHEETS 1-2

RT 1			
nes:			
dicted vs. observ	ed outcomes of random chance events		
	Marble Color Key	Data Table 1	
	Marble Color Designation	Actual Marble Color	
	Color #1		
	Color #2		
	Color #3		
-	aw a single marble from the mixture, what		
ŕ	outcomes include drawing a marble of an	•	
are in the mix			
	orobability of drawing a marble of color #1 erator/denominator) and as a decimal frac		and present the resu
Work:			
Results:			

2.	If you withdrew 30 marbles from the mixture at random, how many of the marbles are expected (predicted) to be color #1 marbles? Show your work and present the result as a fraction (numerator/denominator) and as a decimal fraction.
	Work:
	Results:
3.	What is the probability of drawing a marble of color #2 on a given draw? Show your work and present the result as a fraction (numerator/denominator) and as a decimal fraction.
	Work:
	Results:
4.	If you withdrew 15 marbles from the mixture at random, how many of the marbles are expected (predicted) to be color #2 marbles? Show your work and present the result as a fraction (numerator/denominator) and as a decimal fraction.
	Work:
	Results:
5.	What is the probability of drawing a marble of color #3 on a given draw? Show your work and present the result as a fraction (numerator/denominator) and as a decimal fraction.
	Work:
	Results:

6. If you withdrew 60 marbles from the mixture at random, how many of the marbles are expected (predicted) to be color #3 marbles? Show your work and present the result as a fraction (numerator/denominator) and as a decimal fraction.

Work:		
Results:		

Your Results Data Table 2

Trial #	Color of Marble	Trial #	Color of Marble	Trial #	Color of Marble
1	Marsio	11	Marbio	21	War Sie
2		12		22	
3		13		23	
4		14		24	
5		15		25	
6		16		26	
7		17		27	
8		18		28	
9		19		29	
10		20		30	
Color #1 Total		Color #1 Total		Color #1 Total	
Color #2 Total		Color #2 Total		Color #2 Total	
Color #3 Total		Color #3 Total		Color #3 Total	

Observed Outcomes Data Table 3

	Trial # 1-10	Trial # 11-20	Trial # 21-30	Total Trial #1-30		
Your Data	# of Marbles					
Color #1						
Color #2						
Color #3						
Classmate #1		# of Ma	arbles			
Color #1						
Color #2						
Color #3						
Classmate #2		# of Ma	arbles			
Color #1						
Color #2						
Color #3						

Proportional Outcomes Data Table 4

i Toportional Outcomes			Data Table
Data Source	Proportion of Color #1	Proportion of Color #2	Proportion of Color #3
Your Data			
Trial #1-10			
Trial #11-20			
Trial #21-30			
Total Trial #1-30			
Classmate #1			
Total Trial #1-30			
Classmate #2			
Total Trial #1-30			
All Data Total Trial #1-90			

- 7. Answer the following questions using the values presented in DATA TABLE #4.
 - a) Describe how the ratios of the three colors of marbles that you observed were different from those you calculated using Total of All Data (last line, DATA TABLE #4) observations.
 - b) Describe which of these value sets is the more reliable estimate of the actual ratio of marbles. Include a reason why you reached this conclusion.
 - **c)** Based on the mean of all observations, what is the probability that you randomly would withdraw a marble of color #1?

STUDENT REPORTING DATA SHEET

PART 2		
Names:		_
,		

Modeling one possible type of planetary formation process.

[Measuring Cup = 1/3 cup]

Data Table 5

Observation Number	Number of Color #1 Marbles	Number of Color #2 Marbles	Number of Color #3 Marbles	TOTAL Number of Marbles
#1				
#2				
#3				
#4				
#5				
SUM of All Observations				
OBSERVED RATIO				

[Measuring Cup = 1/2 cup]

Data Table 6

Observation Number	Number of Color #1 Marbles	Number of Color #2 Marbles	Number of Color #3 Marbles	TOTAL Number of Marbles
#1				
#2				
#3				
#4				
#5				
SUM of All Observations				
OBSERVED RATIO				

[Measuring Cup = 1 cup] Data Table 7

Observation Number	Number of Color #1 Marbles	Number of Color #2 Marbles	Number of Color #3 Marbles	TOTAL Number of Marbles
#1				
#2				
#3				
#4				
#5				
SUM of All Observations				
OBSERVED RATIO				

- 1. Answer the following questions using the values in Data Tables #5, #6, and #7:
 - a) Which of the three ratios of marbles most closely matches the predicted ratio of marbles?
 - b) Using the sum of all observation values in Data Table #5, predict the expected ratio of marble colors if a 1-cup measuring cup was used [show your calculations].
 - c) How does the predicted ratio you just calculated compare with the OBSERVED RATIO values in Data Table #7?
 - d) Give possible reasons for the differences in the observations.
 - e) Using the sum of all observation values in Data Table #6, predict the expected ratio of marble colors if a 1-cup measuring cup was used [show your calculations].
 - f) How does this predicted ratio you just calculated compare with the OBSERVED RATIO values in Data Table #7?
 - g) Give possible reasons for the differences in the observations.

2. Assume that:

- a) Each of the marble colors models a different chemical element
- b) Each chemical element has the atomic mass unit value of its marble color (such as 1, 2, or 3 for marble color #1, marble color #2, or marble color #3, respectively)
- c) The original mixture of marbles models the ratio of these elements in the remnants of the solar nebula
- d) Scooping the marbles using differently sized-measuring cups models the formation of planets of different sizes
- 3. Using this model, answer the following questions:
 - a) Describe how the elemental composition of three planets differ.
 - b) Explain the source of variability that led to the difference in elemental composition among the planets in this case.
 - c) What factors, other than the differences between predicted and observed outcomes of random chance events, could account for the differences in the elemental composition of the three planets?